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GAS-DYNAMIC PROCESSES IN TWO-PHASE

FLOWS IN MHD GENERATORS

UDC 538.4I. M. Vasenin,1 T. V. Vasenina,2 and A. A. Glazunov2

A plane problem of a two-phase monodisperse flow of combustion products of plasma-forming com-
posite solid propellants in the duct of a Faraday’s MHD generator with continuous electrodes, in-
cluding an accelerating nozzle, MHD channel, and diffuser, is considered. An algorithm based on the
pseudo-transient method is developed to solve the system of equations describing the two-phase flow.
Gas-dynamic processes in the channels of the Pamir-1 setup are numerically studied. It is shown
that shock-free deceleration of a supersonic flow to velocities close to the equilibrium velocity of sound
in a two-phase mixture and significantly lower than the velocity of sound in the gas is possible in
two-phase flows.
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Introduction. An analysis of experimental and theoretical results shows that gas-dynamic processes in
pulsed MHD generators (PMHDG) on plasma-forming composite solid propellants have a spatial character. Even
in linear PMHDGs, the flow can be non-one-dimensional because of the different values of the ponderomotive force
and nonequilibrium distribution of particles over the channel cross section.

Non-one-dimensional plasma flows in MHD generators (MHDG) were mainly studied within the framework
of the one-phase model [1–5]. There are some papers [6–8] dealing with certain aspects of non-one-dimensional two-
phase MHD flows. In the case of strong MHD interaction, shock waves can be formed in the flow, which significantly
affect the MHDG volt–ampere characteristics [4]. Such regimes of MHDG operation and associated features of two-
dimensional two-phase magnetogasdynamic flows in MHD channels have not been adequately considered yet.

Formulation of the Problem and Initial System of Equations. We consider a plane flow of a mixture
of low-temperature plasma (gas phase) and monodisperse particles in the gas-dynamic duct of an MHD setup
including a Laval nozzle, a Faraday channel of the generator with continuous electrodes, and a diffuser. The two-
phase flow is described with the help of the two-fluid model of continuous media [9], whose main assumptions for
nozzle flows are formulated in [10]. In studying the two-phase flow in the MHDG, additional assumptions are made
[6, 11].

The magnetic Reynolds number in the PMHDG is Rem � 1; therefore, the so-called galvanic approximation
[6], in which the induced magnetic field is neglected, is used to calculate electromagnetic quantities. In addition, it
is assumed that the induction vector of the external magnetic field has only one component: B(0, 0, BZ(x)).

Under the above-made assumptions, the gas-phase equations take the form
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and the condensed-phase equations have the form
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Here ρ, P , T , V (u, v), e, and ε are the density, pressure, temperature, velocity vector, total energy of unit volume,
and internal energy of unit mass of the gas phase, respectively (the corresponding parameters for solid particles
are marked by the subscript “s”), R is the gas constant, V (t) is the voltage on the electrodes, h(x) is the distance
between the electrodes, σ is the electrical conductivity, β is the Hall parameter, cV and cp are the specific heats
of the gas at constant volume and pressure, respectively, CR and Cα are the coefficients of force and temperature
interaction between the gas phase and particles [10], η is the dynamic viscosity of the gas phase, Re and Pr are
the Reynolds and Prandtl numbers, respectively, ρsub and csub are the specific density and heat capacity of the
condensed-phase substance, respectively, and ds is the diameter of particles of the condensed phase.

The elevated conductivity of the low-temperature plasma in the PMHDG is provided by introducing additives
containing alkali metals with a reduced ionization potential into plasma-forming propellants. The following model
dependences were obtained for such plasma in [2]:
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Here Ie is the ionization potential and µe is the mobility of electrons; the subscript 1 indicates some scale values of
parameters.

For the external-load resistance Rload, the voltage on the electrodes is
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where a(x) is the distance between the insulators and L is the electrode-zone length.
For the numerical solution of system (1), the steady subsystem of gas-phase equations is replaced by an

unsteady system by adding the unsteady terms ∂U/∂t, where U = (ρ, ρu, ρv, e)t. The flow rate, velocity-vector
direction, and entropy were set for the unsteady subsystem of gas-phase equations in the input section of the gas-
dynamic duct, and the no-slip conditions were set on the walls. The flow in the output section was assumed to be
supersonic, and the boundary conditions were not imposed.

Owing to characteristic properties of system (2), the boundary conditions for the condensed phase were
imposed only in the input section of the gas-dynamic duct: the velocity and temperature of particles were set from
the condition of velocity and temperature equilibrium of the phases, and the density of the “gas” particles was
assumed to be ρs = ρZ/(1− Z), where Z is the mass fraction of condensate.
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It was assumed that liquid particles of metal oxides, hitting the channel contour, stick to the walls and, after
cooling, form a thin film on the walls, which does not affect the flow in the main part of the channel. Owing to this
assumption, the recoil and motion of particles along the walls were not considered.

The initial conditions were the values of the plasma parameters ρ, V (u, v), and e correlated with the boundary
conditions and defined in a manner to obtain a supersonic flow in the MHD channel already at the initial time.

Pseudo-Transient Method for Calculating the Steady Two-Dimensional Two-Phase Magneto-
gasdynamic Flow. As the particle size ds tends to zero, the interaction coefficients CR and Cα tend to infinity,
which is equivalent to emergence of small parameters at the derivatives in Eqs. (1) and (2). Therefore, the proposed
algorithm of solving Eqs. (1) is based on a combination of the difference scheme implicit in the right sides [12]
and the method developed by S. K. Godunov [13]. Godunov’s method allows a correct calculation of shock waves,
and the difference scheme implicit in the right sides allows one to solve equations with a small parameter at the
derivative.

The conservation laws (1) in an integral form become∮∫
U dx dy + F dy dt+G dt dx =

∫∫∫
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H dx dy dt. (4)

With accuracy to the terms τ , ∆x, and ∆y, the right side of Eq. (4) can be written as∫∫∫
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where Ωjk is the cell area and τ is the step of integration in time.
The difference scheme for calculating parameters of the (n+ 1)th layer has the form
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Here ∆n
ρ , ∆n

ρu, ∆n
ρv, and ∆n

H are the total fluxes of mass, momentum projections, and enthalpy through the side
surfaces of the cell, which are calculated by the scheme of [13].

The calculation sequence for the time tn+1 is as follows:
1) based on the discontinuity-decay scheme, the fluxes ∆n

ρ , ∆n
ρu, ∆n

ρv, and ∆n
H are calculated;

2) from Eq. (5), the density ρn+1 is found;
3) by solving jointly Eqs. (6) and (7), un+1 and vn+1 are found;
4) from Eq. (8), the temperature Tn+1 is determined;
5) from the equation of state, the pressure Pn+1 is found.
In solving the steady equations (2), we use the scheme of the method of characteristics, which is designed

for solving equations with small parameters at the derivatives [9]. The plasma and particle parameters are jointly
calculated by the pseudo-transient method in the following sequence: 1) stabilization of subsystem (1) is calculated;
2) Equations (2) are solved with allowance for the plasma parameters obtained. The particle parameters are
interpolated to the nodes of the computational grid for the gas phase.

The process is repeated until the integral parameter V (t) converges with given accuracy.
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Fig. 1. Isobars for Z = 0.238, BZ = 3.5 T, and Rload = 0.025 (a) and 0.0083 Ω (b).
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Fig. 2. Mach number isolines for Z = 0.445, BZ = 4 T, and Rload = 0.025 Ω.
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Fig. 3. Power versus magnetic induction for the Pamir-1 setup
(the points show the experimental data of [2]).
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Calculation Results for Two-Dimensional Two-Phase Magnetogasdynamic Flows. The calcula-
tions were performed in an MHD channel simulating the duct of the Pamir-1 setup. The influence of magnetic-field
induction and external-load resistance on the flow parameters was considered. In calculating σ and β by formula (3),
we assumed that σ1 = 55 S/m, µe1 = 0.17 T−1, T1 = 2774 K, P1 = 3.86 · 105 N/m2, and Ie = 45 300 K [2]. Because
of the large density of isolines of flow parameters in the nozzle, the region of the gas-dynamic duct of the setup was
mapped onto a rectangle.

The isobars of the shock-free two-phase flow for ds = 4 ·10−6 m, Z = 0.238, BZ = 3.5 T, Rload = 0.025 Ω are
plotted in Fig 1a. As the load resistance decreases to Rload = 0.0083 Ω, a shock wave arises in the flow (Fig. 1b).

The Mach number isolines in the channel of the Pamir-1 setup for BZ = 4 T and Rload = 0.025 Ω are plotted
in Fig. 2. For BZ > 3.7 T, a shock-free subsonic flow arises in the channel. Nevertheless, the setup power for these
values of induction continues to grow. Figure 3 shows the dependence of the MHDG power N on magnetic-field
induction. The experimental data were taken from [2].

Conclusions. In the development of MHD generators, it is necessary to obtain a fully supersonic flow in the
channel, since a shock wave responsible for boundary-layer separation can appear in the case of plasma deceleration
to Mach numbers M < 1, which results in an increase in channel drag and a decrease in MHDG power. In addition,
there are no mathematical tools for modeling transonic two-phase flows, hence, it is impossible to design generators
with a mixed flow character in the channel.

In the case of a two-phase flow with high mass fractions of condensate in the MHD channel, it is possible to
reach shock-free deceleration of a supersonic flow to M ≈ 0.8, which allows one to increase the power and efficiency
of generators, which employ combustion products of metallized propellants as a working body.

It should also be noted that the increase in PMHDG power (for a PMHDG of the Pamir-1 type) is hindered
by boundary-layer separation, which occurs when some critical value of the interaction parameter is exceeded.
Therefore, it is impossible to increase the power of the setup by merely increasing magnetic-field induction. Still,
the experiments of [2] showed that separation can be eliminated by boundary-layer suction.
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